12th ICG MONTPELLIER SUMMER SCHOOL

GLASS FORMATION AND PROPERTIES With a particular emphasis on *Rheology: Viscosity & relaxation*

5-9th July 2021 - MONTPELLIER, FRANCE

Scientific Program

	Monday	Tuesday	Wednesday	Thursday	Friday
08h25	Introduction to the Course/ICG (JP)				
08h40	Optical absorption and redox chemistry. (J Parker)	Modelling (I): atomistic simulations. (A Takada)	Modelling (II): Bridging between macroscopic & microscopic phenomena. (A Takada)	Rheology and relaxation (J Deubener)	Q&A Session. Including 'Making Glass' Panel of lecturers
09h40	Thermodynamics of glasses I. One- and multicomponent glasses. (R Conradt)	Structure: Neutron and X- ray diffraction, EXAFS. (R Vacher))	Vibrations (I): IR absorption, Brillouin and Raman Scattering (B Hehlen)	Calorimetry & glass transition (Yuanzheng Yue)	Student presentation of projects
10h40	Comfort break/ Breakout rooms	Comfort break/ Breakout rooms	Comfort break/ Breakout rooms	Comfort break/ Breakout rooms	Comfort break/ Breakout rooms
11h00	Mass transport in glass. (J Parker)	Glass ceramics (l): Nucleation and crystallization. (J Deubener)	Vibrations (II): relation with glass structure (B Hehlen)	Measuring and modelling glass viscosity I (M Ojovan)	Student presentation of projects
12h00	Thermodynamics of glasses II: Example: chemical durability . (R Conradt)	NMR in silicates glasses. (P Florian)	Mechanical properties of glass. (R Hand)	Glass melt viscosity & Industry (R Conradt)	Questionnaires and awards
13h00	Lunch break	Lunch break	Lunch break	Lunch break	
14h15	Students describe their own research activities.	NMR in silicate glasses 2. (P Florian)	Tutorials	Tutorial	
	(4 min /person – no more than 5 slides).	Project allocation & start work on project	Project workshops	Project workshops	
	Welcome reception. Breakout rooms			Tourist Office and Breakout rooms	

TUTORIALS (choose a maximum of 2 from 5)

"Under the pine trees"

Glass and phase diagrams - quantitative treatment of multicomponent systems: assessment of glass properties (thermal, mechanical, chemical), approach to structural features & approach to the energetics of glass melting - How to identify the positions of complex glasses in phase diagrams.

Calculating Raman activities : activity of the Raman modes in crystals for a given symmetry and scattering geometry - Molecular selection rules of simple liquids - the case of glasses.

Diffusion coefficient: Values of D. Effect of temperature. D vs stress relaxation in ion exchange toughening: Significance of (Dt)^{1/2}. Examples of time and distance *e.g.* tin bath depth.

Practical aspects on atomistic simulations: how to calculate atomic structures and mechanical, transport and optical properties by simulations.

Mechanical Properties: how to carry out measurements and obtain meaningful data

LIST OF LECTURERS

R. Conradt	UniglassAC GmbH Co.
J. Deubener	Technishe Universität Clausthal
P. Florian	CEMHTI-CNRS
R. Hand	University of Sheffield
B. Hehlen	University of Montpellier
M. Ojovan	Imperial College
J. Parker	University of Sheffield
A. Takada	<i>ex</i> Asahi Glass
R. Vacher	Université de Montpellier
Yuanzheng Yue	Aarlborg University

Aachen, Germany Clausthal-Zellerfeld, Germany Orleans France Sheffield, UK Montpellier, France London, UK Sheffield,-UK Yokohama, Japan Montpellier, France Aarlborg, Denmark reinhard.conradt@gmail.com jd@tu-clausthal.de Pierre.florian@cnrs-orleans.fr r.hand@sheffield.ac.uk bernard.hehlen@umontpellier.fr m.i.ojovan@gmail.com j.m.parker@sheffield.ac.uk akira_takada_scientist@yahoo.co.jp René.Vacher@umontpellier.fr yy@bio.aau.dk

