# 14<sup>th</sup> ICG SUMMER SCHOOL

### **GLASS FORMATION, STRUCTURE, AND PROPERTIES**



## 2<sup>nd</sup> – 7<sup>th</sup> July 2023 – Montpellier France

**Scientific Program** 







#### **BASIC SCIENCE**

|       | Monday                                                                                           | Tuesday                                                                                | Wednesday                                                | Thursday                                                                                             | Friday             |
|-------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------|
| 08h30 | Welcome. Introduction to the<br>Course and ICG ( <b>J. Parker</b> )                              |                                                                                        |                                                          |                                                                                                      |                    |
| 08h45 | Optical absorption and redox<br>chemistry<br>( <b>J. Parker</b> )                                | Structure (I): Neutron and X-<br>ray diffraction<br>( <b>R. Vacher</b> )               | Mechanical properties of glass (I)<br><b>R. Hand</b>     | Modelling (I): atomistic<br>simulations<br>( <b>A. Takada</b> )                                      | Debates            |
| 09h45 | Thermodynamics I: One-<br>component and<br>multicomponent oxide glasses<br>( <b>R. Conradt</b> ) | NMR in oxide glasses (I)<br>( <b>P. Florian</b> )                                      | Glass ceramics (l):<br>( <b>J. Deubener</b> )            | Vibrations (I): basics of IR<br>absorption, Brillouin and<br>Raman scattering<br><b>(B. Hehlen</b> ) | Debates            |
| 10h45 | Coffee break                                                                                     | Coffee break                                                                           | Coffee break                                             | Coffee break                                                                                         | 10h45 Coffee break |
| 11h00 | Mass transport in glass.<br>( <b>J. Parker</b> )                                                 | Structure (II): Neutron and X-<br>ray diffraction: applications<br>( <b>R.Vacher</b> ) | Mechanical properties of<br>glass (II)<br><b>R. Hand</b> | Modelling (II): Bridging<br>between macroscopic and<br>microscopic phenomena<br>( <b>A. Takada</b> ) | Debates            |
| 12h00 | Thermodynamics II:<br>Combustion processes<br>( <b>R. Conradt</b> )                              | NMR in oxide glasses (II)<br>( <b>P. Florian</b> )                                     | Glass ceramics (II):<br>( <b>J. Deubener</b> )           | Vibrations (II): relation with<br>glass structure<br>( <b>B. Hehlen</b> )                            | 12h Closing Event  |
| 13h00 | Lunch                                                                                            | Lunch                                                                                  | Lunch                                                    | Lunch                                                                                                |                    |
| 14h30 | Students describe their own                                                                      |                                                                                        | Tutorials<br>(Select from list)                          | Tutorial<br>(Select from list)                                                                       |                    |
| 15h30 | research activities<br>(5 min /person).                                                          | Project allocation<br>& initial preparation                                            | Workshops<br>Project preparation                         | Workshops<br>Project preparation                                                                     |                    |
| 18h00 | To be announced<br>(E. Muijsenberg)                                                              |                                                                                        |                                                          | Chemical durability<br>( <b>R. Conradt</b> )                                                         |                    |
| 19h00 | Welcome reception                                                                                |                                                                                        | ·                                                        | School Dinner                                                                                        |                    |







### **TUTORIALS**

**Glass and phase diagrams - quantitative treatment of multicomponent systems**: assessment of glass properties (thermal, mechanical, chemical), approach to structural features & approach to the energetics of glass melting - How to identify the positions of complex glasses in phase diagrams.

**Calculating Raman activities** : activity of the Raman modes in crystals for a given symmetry and scattering geometry - Molecular selection rules of simple liquids - the case of glasses.

**Diffusion**: Values of D, examples. Activation energies. Balance of D *vs* stress relaxation in ion exchange toughening: Optimum temperature range. Significance of (Dt)<sup>1/2</sup>. Examples of time and distance *e.g.* tin bath depth, chemical toughening, chemical durability effects at room T. Crystal growth, nucleation, coarsening.

**Practical aspects on atomistic simulations:** how to calculate atomic structures and mechanical, transport and optical properties by simulations.

**Strength:** subject to demand







#### **LIST OF LECTURERS**

Germany

| R. Conradt     | Aachen University & uniglassAC Gmb | oH Co. Aachen, Germany        |  |
|----------------|------------------------------------|-------------------------------|--|
| J. Deubener    | Technishe Universität Clausthal    | Clausthal-Zellerfeld, Germany |  |
| P. Florian     | CEMHTI-CNRS                        | Orleans, France               |  |
| R. Hand        | University of Sheffield            | Sheffield, UK                 |  |
| B. Hehlen      | University of Montpellier          | Montpellier, France           |  |
| E. Muijsenberg | Glass Services                     | Vsetin, Czech Republic        |  |
| J. Parker      | University of Sheffield            | Sheffield, UK                 |  |
| A. Takada      | University College London (ex-AGC) | Tokyo, Japan                  |  |
| R. Vacher      | University of Montpellier -CNRS,   | Montpellier, France           |  |
|                |                                    |                               |  |

reinhard.conradt@gmail.com jd@tu-clausthal.de pierre.florian@cnrs-orleans.fr r.hand@sheffield.ac.uk bernard.hehlen@umontpellier.fr erik.muijsenberg@gsl.cz j.m.parker@sheffield.ac.uk akira\_takada\_scientist@yahoo.co.jp rené.vacher@umontpellier.fr











